对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线],其中x1,2=-b±√b^2-4ac,顶点式:y=a(x-h)^2+k,[抛物线的顶点P(h,k)],一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。
对于二次函数y=ax^2+bx+c,
其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线],
其中x1,2=-b±√b^2-4ac,
顶点式:y=a(x-h)^2+k,
[抛物线的顶点P(h,k)],
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0),
注:在3种形式的互相转化中,有如下关系:h=-b/2a=(x₁+x₂)/2k=(4ac-b^2)/4a与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a。
所以二次函数的顶点坐标公式是顶点坐标是(-b/2a,4ac-b2/4a)。
二次函数图象是抛物线,是轴对称性图形。y=ax的图象是最简单的二次图像,学习也较容易。顶点坐标为(0,0),即原点;对称轴为y轴,开口由a的正负决定。一般式:y=ax^2+bx+c(a≠0,a、b、c为常数)常数项c决定抛物线与y轴交点。
二次函数求根的方法有配方法和公式法。在数学中,把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,二次函数的图像是一条主轴平行于y轴的抛物线。
1、配方法:
首先,明确的是配方法就是将关于两个数(或代数式,但这两个一定是平方式),写成(a+b)^2的形式或(a-b)^2的形式。
将(a+b)^2的展开,得(a+b)^2=a^2+2ab+b^2。
故需配成(a+b)^2的形式,就必须要有a^2,2ab,b^2,则选定要进行配方的对象后(就是a^2和b^2,这就是核心,一定要有这两个对象,否则无法使用配方公式),即进行添加和去增。
2、公式法:
二次函数求根公式法:推导一下ax^2+bx+c=0的解。移项,ax^2+bx=-c两边除a,然后再配方,x^2+(b/a)x+(b/2a)^2=-c/a+(b/2a)^2[x+b/(2a)]^2=[b^2-4ac]/(2a)^2两边开平方根,解得x=[-b±√(b2-4ac)]/(2a)。
关注赣州中职网微信公众号
随时随地 找学校、网上报名,录取查询!